14 research outputs found

    Slicing with guaranteed quality of service in wifi networks

    Get PDF
    Network slicing has recently been proposed as one of the main enablers for 5G networks. The slicing concept consists of the partition of a physical network into several self-contained logical networks (slices) that can be tailored to offer different functional or performance requirements. In the context of 5G networks, we argue that existing ubiquitous WiFi technology can be exploited to cope with new requirements. Therefore, in this paper, we propose a novel mechanism to implement network slicing in WiFi Access Points. We formulate the resource allocation problem to the different slices as a stochastic optimization problem, where each slice can have bit rate, delay, and capacity requirements. We devise a solution to the problem above using the Lyapunov drift optimization theory, and we develop a novel queuing and scheduling algorithm. We have used MATLAB and Simulink to build a prototype of the proposed solution, whose performance has been evaluated in a typical slicing scenario.This work has been supported in part by the European Commission and the Spanish Government (Fondo Europeo de Desarrollo Regional, FEDER) by means of the EU H2020 NECOS (777067) and ADVICE (TEC2015-71329) projects, respectivel

    Providing reliable services over wireless networks using a low overhead random linear coding scheme

    Get PDF
    In this work, we propose a novel intra-flow network coding solution, which is based on the combination of a low overhead Random Linear Coding (RLC) scheme and UDP, to offer a reliable communication service. In the initial protocol specification, the required overhead could be rather large and this had an impact over the observed performance. We therefore include an improvement to reduce such overhead, by decreasing the header length. We describe an analytical model that can be used to assess the performance of the proposed scheme. We also use an implementation within the ns-3 framework to assess the correctness of this model and to broaden the analysis, considering different performance indicators and more complex network topologies. In all cases, the proposed solution clearly outperforms a more traditional approach, in which the TCP protocol is used as a means to offer a reliable communication service.This work has been supported by the Spanish Government by its funding through the project COSAIF, “Connectivity as a Service: Access for the Internet of the Future” (TEC2012-38754-C02-01)

    Fast and efficient energy-oriented cell assignment in heterogeneous networks

    Get PDF
    The cell assignment problem is combinatorial, with increased complexity when it is tackled considering resource allocation. This paper models joint cell assignment and resource allocation for cellular heterogeneous networks, and formalizes cell assignment as an optimization problem. Exact algorithms can find optimal solutions to the cell assignment problem, but their execution time increases drastically with realistic network deployments. In turn, heuristics are able to find solutions in reasonable execution times, but they get usually stuck in local optima, thus failing to find optimal solutions. Metaheuristic approaches have been successful in finding solutions closer to the optimum one to combinatorial problems for large instances. In this paper we propose a fast and efficient heuristic that yields very competitive cell assignment solutions compared to those obtained with three of the most widely-used metaheuristics, which are known to find solutions close to the optimum due to the nature of their search space exploration. Our heuristic approach adds energy expenditure reduction in its algorithmic design. Through simulation and formal statistical analysis, the proposed scheme has been proved to produce efficient assignments in terms of the number of served users, resource allocation and energy savings, while being an order of magnitude faster than metaheuritsic-based approaches.This paper has been supported by the National Council of Research and Technology (CONACYT) through Grant FONCICYT/272278 and the ERANetLAC (Network of the European Union, Latin America, and the Caribbean Countries) Project ELAC2015/T100761. This paper is partially supported also by the ADVICE Project, TEC2015-71329 (MINECO/FEDER) and the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 777067 (NECOS Project)

    Joint route selection and split level management for 5G C-RAN

    Get PDF
    This work tackles the problem faced by network/infrastructure providers of jointly selecting routing and functional split level to satisfy requests from virtual mobile network operators (vMNOs). We build a novel system model that brings together all the involved elements and features, embracing split levels defined by the 3GPP and packet switch fronthaul network. To our best knowledge, this is the first work that provides a solution for multiple vMNO requests considering the two aforementioned sub-problems (i.e. split selection and routing). We use the model defined to formulate an optimization problem, which is characterized by the exponential size of its search space. We propose two heuristic approaches to address this problem: (1) a greedy scheme, and (2) an evolutionary algorithm, which is also improved with a specialized initialization. We conduct extensive experiments to assess the performance and behavior of the proposed methods, over varying network instances. When possible, we also perform comparisons with respect to the optimal solution and a well-known commercial solver. Our results indicate that the proposed techniques represent appropriate trade-offs between solution quality and execution time, and can serve complementary goals: the quality of the results yielded by our evolutionary method are better, but at the cost of longer execution times; in contrast, our greedy algorithm offers a reasonably appropriate performance, with an execution time that is notably lower. Our experiments show that it is possible to produce near-optimal results to the above complex problem through computationally efficient algorithmic solutions.This paper has been partially supported by the Secretary of Public Education of Mexico (SEP) and Cinvestav through research grant 262, and the National Council of Research and Technology (CONACYT) through grant ERANetLACFONCICYT No. 272278. Luis Diez and Ramon Agüero acknowledge the funding by the Spanish Government (Ministerio de Economía y Competitividad, Fondo Europeo de Desarrollo Regional, MINECO-FEDER) by means of the project FIERCE: Future Internet Enabled Resilient smart CitiEs (RTI2018-093475-AI00)

    Guaranteed bit rate slicing in WiFi networks

    Get PDF
    In forthcoming 5G networks, slicing has been proposed as a means to partition a shared physical network infrastructure into different self-contained logical parts (slices), which are set up to satisfy certain requirements. Although the topic has been thoroughly investigated by the scientific community and the industry, there are not many works addressing the challenges that appear when trying to exploit slicing techniques over WiFi networks. In this paper, we propose a novel method of allocating resources for WiFi networks to satisfy minimum bit rate requirements. We formulate an optimization problem, and we propose a solution based on the theory of Lyapunov drift optimization. The validity of the proposed solution is assessed by means of a simulation-based evaluation in Matlab.This work has been supported in part by the European Commission and the Spanish Government (Fondo Europeo de Desarrollo Regional, FEDER) by means of the EU H2020 NECOS (777067) and ADVICE (TEC2015-71329) projects, respectively

    Impacts of use and abuse of nature in Catalona with proposal for sustainable management

    Get PDF
    This paper provides an overview of the last 40 years of use, and in many cases abuse, of the natural resources in Catalonia, a country that is representative of European countries in general, and especially those in the Mediterranean region. It analyses the use of natural resources made by mining, agriculture, livestock, logging, fishing, nature tourism, and energy production and consumption. This use results in an ecological footprint, i.e., the productive land and sea surface required to generate the consumed resources and absorb the resulting waste, which is about seven times the amount available, a very high number but very similar to other European countries. This overexploitation of natural resources has a huge impact on land and its different forms of cover, air, and water. For the last 25 years, forests and urban areas have each gained almost 3% more of the territory at the expense of agricultural land; those municipalities bordering the sea have increased their number of inhabitants and activity, and although they only occupy 6.7% of the total surface area, they account for 43.3% of the population; air quality has stabilized since the turn of the century, and there has been some improvement in the state of aquatic ecosystems, but still only 36% are in good condition, while the remainder have suffered morphological changes and different forms of nonpoint source pollution; meanwhile the biodiversity of flora and fauna remains still under threat. Environmental policies do not go far enough so there is a need for revision of the legislation related to environmental impact and the protection of natural areas, flora, and fauna. The promotion of environmental research must be accompanied by environmental education to foster a society which is more knowledgeable, has more control and influence over the decisions that deeply affect it. Indeed, nature conservation goes hand in hand with other social and economic challenges that require a more sustainable vision. Today's problems with nature derive from the current economic model, which is environmentally unsustainable in that it does not take into account environmental impacts. Lastly, we propose a series of reasonable and feasible priority measures and actions related to each use made of the country's natural resources, to the impacts they have had, and to their management, in the hope that these can contribute to improving the conservation and management of the environment and biodiversity and move towards sustainability
    corecore